
Design and Analysis of Algorithm
Complexity Analysis

1 Notions of Algorithm and Time Complexity

2 Pseudocode of Algorithm

3 Asymptotic Order of Function

4 Important Function Class

5 Survey of Common Running Times

1 / 69

Outline

1 Notions of Algorithm and Time Complexity

2 Pseudocode of Algorithm

3 Asymptotic Order of Function

4 Important Function Class

5 Survey of Common Running Times

2 / 69

Problem and Solution

Problem Description.
A group of parameters that specify the problem (set, variable,
function, sequences, etc.), include descriptions of domain and
relation among them
Definition of Solution: determined by optimization objective
or constraints

Instance. An assignment of parameters → an instance of problem

3 / 69

Problem and Solution

Problem Description.
A group of parameters that specify the problem (set, variable,
function, sequences, etc.), include descriptions of domain and
relation among them
Definition of Solution: determined by optimization objective
or constraints

Instance. An assignment of parameters → an instance of problem

3 / 69

Algorithm

Definition 1 (Algorithm)
An algorithm A is a finite sequence of well-defined, computer
implementable instructions that solve a class of problems

algorithms are always unambiguous
specifications for performing calculations, data processing,
automated reasoning, and other tasks.

Algorithm A for Problem P

take any instance of P as A’s input, computation of each step
is deterministic
A halts in finite steps
always output the correct solution

4 / 69

Basic Computer Steps and Input Size

An insightful analysis is based on the right simplifications.

Basic computer steps. capture abstract atomic operation
Example. compare, add, multiplication, swap, assign . . .

This is the first important simplification!

Input size. capture the scale of instance: proportional to the length
of instance encoding string

Example. number of array, number of scheduling tasks,
number of vertices and edges

5 / 69

Examples of Input Size and Basic Computer Steps (1/2)

Sorting. array a[n]

n: the number of elements in the array
element compares and movement

Searching. search x in array a[n]

n: the number of elements in the array
element compares between x and a[i]

Integer multiplication. a× b

the binary length of a and b, a.k.a. m = log2 a, n = log2 b
bit-wise multiplication – a× b requires #mn bit-wise
multiplication

6 / 69

Examples of Input Size and Basic Computer Steps (2/2)

Matrix multiplication. An1×n2 · Bn2×n3

dimensions of A and B, a.k.a. n1, n2, n3

point-wise multiplication – A · B requires n1n2n3-times
point-wise multiplication
n1 = n2 = n3 = n ; n3

Graph visit. G = (V,E)

number of vertices and edges
assignment of flag variable

7 / 69

Measurement of Algorithm’s Efficiency

Express running time by counting the number of basic computer
steps as a function of the size of the input.

uncluttered, machine-independent characterization

For different inputs of the same instance size, the number of basic
computer steps might vary ⇒ functions could be different

Choose which one?

8 / 69

Measurement of Algorithm’s Efficiency

Express running time by counting the number of basic computer
steps as a function of the size of the input.

uncluttered, machine-independent characterization

For different inputs of the same instance size, the number of basic
computer steps might vary ⇒ functions could be different

Choose which one?

8 / 69

Three Types of Analyses

I am prepared for the worst, but hope for the best.
— Benjamin Disraeli

Worst-case. Maximum running time for any input of size n.
Example. Quicksort requires at most n2 compares to sort n
elements.
Best-case. Minimum running time for all inputs of size n

Example. Insertion sort only requires n compares when the input is
sorted already.
Average-case. Expected running time for a random input of size n

Example. expected number of element compares of Quicksort is
∼ n logn.

9 / 69

Three Types of Analyses

I am prepared for the worst, but hope for the best.
— Benjamin Disraeli

Worst-case. Maximum running time for any input of size n.
Example. Quicksort requires at most n2 compares to sort n
elements.

Best-case. Minimum running time for all inputs of size n

Example. Insertion sort only requires n compares when the input is
sorted already.
Average-case. Expected running time for a random input of size n

Example. expected number of element compares of Quicksort is
∼ n logn.

9 / 69

Three Types of Analyses

I am prepared for the worst, but hope for the best.
— Benjamin Disraeli

Worst-case. Maximum running time for any input of size n.
Example. Quicksort requires at most n2 compares to sort n
elements.
Best-case. Minimum running time for all inputs of size n

Example. Insertion sort only requires n compares when the input is
sorted already.

Average-case. Expected running time for a random input of size n

Example. expected number of element compares of Quicksort is
∼ n logn.

9 / 69

Three Types of Analyses

I am prepared for the worst, but hope for the best.
— Benjamin Disraeli

Worst-case. Maximum running time for any input of size n.
Example. Quicksort requires at most n2 compares to sort n
elements.
Best-case. Minimum running time for all inputs of size n

Example. Insertion sort only requires n compares when the input is
sorted already.
Average-case. Expected running time for a random input of size n

Example. expected number of element compares of Quicksort is
∼ n logn.

9 / 69

About Worst-Case

Algorithm. Some exponential-time algorithms are used widely in
practice because the worst-case instances seem to be rare.

Linux grep command

Cryptography. Require hard instance to be efficiently samplable —
problems only have high worst-case complexity may not be suitable
to be used as hardness assumption

Good news to Algorithms = Bad news to Cryptography

Win-Win flavor

10 / 69

About Worst-Case

Algorithm. Some exponential-time algorithms are used widely in
practice because the worst-case instances seem to be rare.

Linux grep command

Cryptography. Require hard instance to be efficiently samplable —
problems only have high worst-case complexity may not be suitable
to be used as hardness assumption

Good news to Algorithms = Bad news to Cryptography

Win-Win flavor

10 / 69

About Worst-Case

Algorithm. Some exponential-time algorithms are used widely in
practice because the worst-case instances seem to be rare.

Linux grep command

Cryptography. Require hard instance to be efficiently samplable —
problems only have high worst-case complexity may not be suitable
to be used as hardness assumption

Good news to Algorithms = Bad news to Cryptography

Win-Win flavor

10 / 69

Formula of A(n)

A(n): average-case complexity
Let X be the set of all inputs of size n, Pr[x ∈ X] = p(x)

t(x): the number of basic operations that A performs on
input x

A(n) =
∑
x∈X

p(x)t(x)

In many cases, we assume the input distribution is a uniform
distribution.

11 / 69

Example of Search

Search Problem

Input. Array a[n] with ascending order, search x

Output. j ∈ [0, . . . , n]

if x ∈ a[n], then j is the first index such that a[j] = x

else, j = 0

Basic operation. element compare between x and a[i]

12 / 69

Sequential Search Algorithm

Algorithm 1: Search(a[n], x)
1: flag ← 0;
2: for j = 1 to n do
3: if a[j] = x then
4: flag = 1;
5: break;
6: end
7: end
8: if flag = 0 then j = 0 ;
9: return j;

Example. 1, 2, 3, 4, 5
x = 4: 4 compares
x = 2.5: 5 compares

13 / 69

Worst-case Complexity

There are 2n+ 1 types different inputs:
Case inside: x = a[1], x = a[2], . . . , x = a[n]

Case outside: x < a[1], a[1] < x < a[2], . . . , a[n] < x

Worse-case input. x /∈ A ∨ x = A[n], requires n compares

Worse-case complexity. T (n) = n

14 / 69

Average-case complexity

Assume Pr[x ∈ A] = p, and distributes on each position with equal
probability.

T (n) =

n∑
i=1

i · p
n
+ (1− p)n //sum of arithmetic sequence

=
p(n+ 1)

2
+ (1− p)n

When p = 1/2

T (n) =
n+ 1

4
+

n

2
≈ 3n

4

15 / 69

Outline

1 Notions of Algorithm and Time Complexity

2 Pseudocode of Algorithm

3 Asymptotic Order of Function

4 Important Function Class

5 Survey of Common Running Times

16 / 69

Pseudocode of Algorithm

Definition 2 (Pseudocode)
An informal high-level description of the operating principle of
algorithms: uses the structural conventions of programming
language, but is intended for human reading rather than machine
reading.

Instruction Symbol
Assignment ← or :=

Branch statement if...then...[else...]
Loop structure while, for, repeat until

Transfer statement goto
Return statement return
Function call Func()
Comment // or /* */

17 / 69

Example: Euclid Algorithm for Greatest Common Divisor

Algorithm 2: EuclidGCD(n,m)

Input: n,m ∈ Z+, n ≥ m
Output: GCD(n,m)

1: while m > 0 do
2: r ← n mod m;
3: n← m;
4: m← r;
5: end
6: return n

18 / 69

Demo: n = 36, m = 15

while n m r

1st loop 36 15 6

2nd loop 15 6 3

3rd loop 6 3 0

3 0 0

output 3

m > 0?

r ← n mod m
n← m
m← r

output n

yes

no

19 / 69

Example of Insertion Sort

Algorithm 3: Algorithm InsertSort(A[n])

Input: array A[n]
Output: A[n] in ascending order

1: for j ← 2 to n do
2: x← A[j];
3: i← j − 1 //insert A[j] to A[1...j − 1];
4: while i > 0 and x < A[i] do
5: A[i+ 1]← A[i];
6: i← i− 1;
7: end
8: A[i+ 1]← x;
9: end

i is the left neighbor index of the final insert position

20 / 69

Demo of Insertion Sort

2 4 1 5 3

j = 3, x = A[3] = 1
i = 2, A[2] = 4

2 4 4 5 3

i > 0, x < A[2] 3

A[3] = 4, i = 1, x = 1

2 2 4 5 3

i > 0, x < A[1] 3

A[2] = 2, i = 0, x = 1

1 2 4 5 3

i > 0 7

i > 0
x < A[i]

A[i+ 1]← A[i]
i← i− 1

A[i+ 1]← x

yes

no

21 / 69

Example of Binary Merge Sort

Algorithm 4: Algorithm MergeSort(A, l, r)
Input: array A[l, r]
Output: A[l, r] in ascending order

1: if l < r then
2: m← ⌊(l + r)/2⌋;
3: MergeSort(A, l,m);
4: MergeSort(A,m+ 1, r);
5: Merge(A, l,m, r);
6: end

MergeSort is a recursive algorithm
call itself from within its own code

22 / 69

Pseudocode of Algorithm A

Algorithm 5: Algorithm A
Input: Array P [0, . . . , n] ∈ Rn+1, x ∈ R
Output: y

1: y ← P [0]; power ← 1;
2: for i← 1 to n do
3: power ← power × x;
4: y ← y + P [i]× power;
5: end
6: return y;

What do 3-4 compute?

23 / 69

for i ∈ [n]
power ← power × x
y ← y + P [i]× power

loop power y

0 1 P [0]

1 x P [0] + P [1]× x

2 x2 P [0] + P [1]× x+ P [2]× x2

3 x3 P [0] + P [1]× x+ P [2]× x2 + P [3]× x3

. . .

Input P [0, . . . , n] is the coefficients of n-degree polynomial P (x)

A compute P (x) =
∑n

i=0 P [i]xi

24 / 69

Outline

1 Notions of Algorithm and Time Complexity

2 Pseudocode of Algorithm

3 Asymptotic Order of Function

4 Important Function Class

5 Survey of Common Running Times

25 / 69

Motivation

We use functions over N to capture how the running time or space
requirements of algorithms grow as the input size increases.

How to compare them? How to classify them?

The first simplification leads to another. Now, second simpli-
fication comes into play, consider the order of function rather
than its concrete form.

26 / 69

Motivation

We use functions over N to capture how the running time or space
requirements of algorithms grow as the input size increases.

How to compare them? How to classify them?

The first simplification leads to another. Now, second simpli-
fication comes into play, consider the order of function rather
than its concrete form.

26 / 69

Motivation

We use functions over N to capture how the running time or space
requirements of algorithms grow as the input size increases.

How to compare them? How to classify them?

The first simplification leads to another. Now, second simpli-
fication comes into play, consider the order of function rather
than its concrete form.

26 / 69

Big-O Notations

Paul Bachmann and Edumund Landau invented a family of
notations known as Big-O notation to describe the limiting
behavior of a function when the input tends towrads infinity.

Figure: Paul Bachmann & Edumund Landau

also known as Bachmann-Landau or asymptotic notation
mathematical notation ; describe running times

27 / 69

Big-O Notation

Definition 3 (Big-O)
∃c > 0, ∃n0, such that ∀n ≥ n0:

f(n) ≤ cg(n)

f is bounded above by g (up to constant factor) asymptotically

f(n) = O(g(n))

Limit definition

lim
n→∞

sup f(n)

g(n)
<∞

28 / 69

Some Remarks

Big-O notation characterizes functions according to their growth
rates: different functions with the same growth rate may be
represented using the same O notation.

letter O is used because the growth rate of a function is also
referred to as the order of the function.

there are many (c, n0), it suffices to find one tuple

for finite values n ≤ n0, the inequality may not hold

constant functions can be written as O(1)

29 / 69

More about Big-O

f(n) = O(g(n)): the order of f(n) is less than that of g(n)
Typical usage: give upper bound

Insertion sort makes O(n2) compares to sort n elements.

Example 1. f(n) = n2 + n

f(n) = O(n2) ← choose c = 2, n0 = 1

f(n) = O(n3) ← choose c = 1, n0 = 2

Example 2. f(n) = 32n2 + 17n+ 1

f(n) = O(n2) ← choose c = 50, n0 = 1

f(n) is also O(n3)

f(n) is neither O(n) nor O(n logn)

30 / 69

Limits of Big-O

Big-O notation only provides an upper bound on the growth rate
of the function.

Associated with big-O notation are several related notations, using
the symbols o, Ω, ω, and Θ, to describe other kinds of bounds on
asymptotic growth rates.

31 / 69

Big-Ω Notation

Definition 4 (Big-Ω)
∃c > 0, ∃n0, ∀n ≥ n0:

f(n) ≥ cg(n)

f is bounded below by g asymptotically

f(n) = Ω(g(n))

Limit definition

lim
n→∞

inf f(n)
g(n)

> 0

32 / 69

Example of Big-Ω

f(n) = Ω(g(n)): the order of f(n) is greater than g(n).
Typical usage: give lower bound

Any compare-based sorting algorithm requires Ω(n logn)
compares in the worst case.

Meaningless statement. Any compare-based sorting algorithm
requires at least O(n logn) compares in the worst case.

O(·) cannot give lower bound

Example. f(n) = n2 + n

f(n) = Ω(n2) ← c = 1, n0 = 1

f(n) = Ω(100n) ← c = 1/100, n0 = 1

33 / 69

Big O and Ω notations are originally used as a tight upper-bound
(resp. lower-bound) on the growth of an algorithm’s effort
But, according to the definitions

g(n) could be a loose upper-bound (resp. lower-bound).

To make the role as a tight upper-bound more clear, small o and ω
notations are used to describe an upper-bound/lower-bound that
cannot be tight.

34 / 69

Big O and Ω notations are originally used as a tight upper-bound
(resp. lower-bound) on the growth of an algorithm’s effort
But, according to the definitions

g(n) could be a loose upper-bound (resp. lower-bound).

To make the role as a tight upper-bound more clear, small o and ω
notations are used to describe an upper-bound/lower-bound that
cannot be tight.

34 / 69

Small o Notation

Definition 5 (Small-o)
∀c > 0, ∃n0, such that ∀n ≥ n0:

f(n) < cg(n)

f is dominated by g asymptotically:

f(n) = o(g(n))

Limit definition
lim
n→∞

f(n)

g(n)
= 0

35 / 69

More about Small-o

f(n) = o(g(n)): the order of f(n) is strictly smaller than that of
g(n)

Typical usage. logn = o(n)

Example. f(n) = n2 + n, f(n) = o(n3)

c ≥ 1: obviously holds, choose n0 = 2 ⇒ n2 + n < cn3

cn3 ≥ n3 = n2((n− 1) + 1) ≥ n2 + n,when n ≥ n0

0 < c < 1: choose n0 > ⌈2/c⌉, because

cn ≥ cn0 ≥ 2

n2 + n < 2n2 ≤ cn · n2 < cn3

36 / 69

Small ω Notation

Definition 6
∀c > 0, ∃n0, ∀n ≥ n0:

f(n) > c · g(n)

f dominates g asymptotically

f(n) = ω(g(n))

Limit definition:
lim
n→∞

f(n)

g(n)
=∞

37 / 69

Example of Small ω

f(n) = ω(g(n)): the order of f(n) is strictly larger than that of
g(n)

Typical usage. n = ω(logn)

Example. f(n) = n2 + n, f(n) = ω(n)

limn→∞
f(n)
n =∞

f(n) ̸= ω(n2): choose c = 2, there does not exist n0 such
that ∀n ≥ n0

cn2 = 2n2 < n2 + n

38 / 69

Visualize the Relationships between these notations

39 / 69

Comparisons

Notation ? c > 0 ? n0 f(n) ? c · g(n) meaning
O ∃ ∃ ≤ upper bound
o ∀ ∃ < non-tight upper bound
Ω ∃ ∃ ≥ lower bound
ω ∀ ∃ > non-tight lower bound

While o and ω are not often used to described algorithms
We define a combination of O and Ω: Θ, which means g(n) is
both a tight upper-bound and a tight lower-bound

40 / 69

Big-Θ Notation: Aims to a Tight Bound

Definition 7 (Big-Θ)
∃c1 > 0, ∃c2 > 0, ∃n0, such that ∀n > n0

c1 · g(n) ≤ f(n) ≤ c2 · g(n)

f is bounded both above and below by g asymptotically

f(n) = Θ(g(n))

Limit definition

lim
n→∞

f(n)

g(n)
= c

41 / 69

Proof of Equivalence

Proof. Definition of the limit ⇒ ∀ε > 0, ∃n0, ∀n ≥ n0:

|f(n)/g(n)− c| < ε

c− ε < f(n)/g(n) < c+ ε

choose ε = c/2 ⇒ c/2 < f(n)/g(n) < 3c/2

∀n ≥ n0, f(n) ≤ (3c/2)g(n) ⇒ f(n) = O(g(n))

∀n ≥ n0, f(n) ≥ (c/2)g(n) ⇒ f(n) = Ω(g(n)).

This proves f(n) = Θ(g(n))

42 / 69

Proof of Equivalence

Proof. Definition of the limit ⇒ ∀ε > 0, ∃n0, ∀n ≥ n0:

|f(n)/g(n)− c| < ε

c− ε < f(n)/g(n) < c+ ε

choose ε = c/2 ⇒ c/2 < f(n)/g(n) < 3c/2

∀n ≥ n0, f(n) ≤ (3c/2)g(n) ⇒ f(n) = O(g(n))

∀n ≥ n0, f(n) ≥ (c/2)g(n) ⇒ f(n) = Ω(g(n)).

This proves f(n) = Θ(g(n))

42 / 69

Proof of Equivalence

Proof. Definition of the limit ⇒ ∀ε > 0, ∃n0, ∀n ≥ n0:

|f(n)/g(n)− c| < ε

c− ε < f(n)/g(n) < c+ ε

choose ε = c/2 ⇒ c/2 < f(n)/g(n) < 3c/2

∀n ≥ n0, f(n) ≤ (3c/2)g(n) ⇒ f(n) = O(g(n))

∀n ≥ n0, f(n) ≥ (c/2)g(n) ⇒ f(n) = Ω(g(n)).

This proves f(n) = Θ(g(n))

42 / 69

More about Big-Θ

f(n) = Θ(g(n)): f(n) = O(g(n)) ∧ f(n) = Ω(g(n)), f(n) and
g(n) have the same order
Typical usage:

Mergesort makes Θ(n logn) compares to sort n elements.

Example 1. f(n) = n2 + n, g(n) = 100n2

f(n) = Θ(g(n))

Example 2. f(n) = 32n2 + 17n+ 1

f(n) is Θ(n2) ← choose c1 = 32, c2 = 50, n0 = 1

f(n) is neither Θ(n) nor Θ(n3)

43 / 69

Example of Primality Test

Algorithm 6: PrimalityTest(n)
Input: odd integer n > 2
Output: true or false

1: s← ⌊n1/2⌋;
2: for j ← 2 to s do
3: if j divides n then return false;
4: end
5: return true;

If n1/2 is computable in O(1)-time, the basic operation is divide

What is the worst-case complexity of naive primality test?

44 / 69

Example of Primality Test

Algorithm 7: PrimalityTest(n)
Input: odd integer n > 2
Output: true or false

1: s← ⌊n1/2⌋;
2: for j ← 2 to s do
3: if j divides n then return false;
4: end
5: return true;

If n1/2 is computable in O(1)-time, the basic operation is divide

What is the worst-case complexity of naive primality test?

44 / 69

Example of Primality Test

Algorithm 8: PrimalityTest(n)
Input: odd integer n > 2
Output: true or false

1: s← ⌊n1/2⌋;
2: for j ← 2 to s do
3: if j divides n then return false;
4: end
5: return true;

If n1/2 is computable in O(1)-time, the basic operation is divide

What is the worst-case complexity of naive primality test?

44 / 69

Input Size Matters: Case of Primality Test

Using n as input size of W (·)

W (n) = O(n1/2) 3 W (n) = Ω(n1/2) 7

Consider inputs of the form 3m, then n1/2 is not the lower
bound

Using λ as input size (length of binary representation of n) of
W (·).

W (n) = O(2λ/2) 3 W (n) = Ω(2λ/2) 3

a.k.a. W (λ) = Θ(2λ/2)

Input size aims to capture the scale of a class of instances.
This is what make this notion useful. For the first case, a class
of instance degrades to a single instance, thus making worst-
case complexity meaningless.

45 / 69

Big-O notation with multiple variables

Upper bounds. f(m,n) is O(g(m,n)) if ∃c > 0, m0 ≥ 0 and
n0 ≥ 0 such that ∀n ≥ n0 and m ≥ m0, f(m,n) ≤ c · g(m,n)

Example. f(m,n) = 32mn2 + 17mn+ 32n3

f(m,n) is both O(mn2 + n3) and O(mn3)

f(m,n) is neither O(n3) nor O(mn2)

Typical usage. Breadth-first search takes O(m+ n) time to find
the shortest path from s to t in a digraph

46 / 69

Properties of Big-O Notations (1/2)

Transitivity. The order of functions are transitive.
f = O(g) ∧ g = O(h) ⇒ f = O(h)

f = Ω(g) ∧ g = Ω(h) ⇒ f = Ω(h)

f = Θ(g) ∧ g = Θ(h) ⇒ f = Θ(h)

f = o(g) ∧ g = o(h) ⇒ f = o(h)

f = ω(g) ∧ g = ω(h) ⇒ f = ω(h)

47 / 69

Properties of Big-O Notations (2/2)
Product

f1 = O(g1) ∧ f2 = O(g2)⇒ f1f2 = O(g1g2)
f ·O(g) = O(fg)

Sum
f1 = O(g1) ∧ f2 = O(g2)⇒ f1 + f2 = O(max(g1, g2))
This implies f1 = O(g) ∧ f2 = O(g)⇒ f1 + f2 ∈ O(g), which
means that O(g) is a convex cone.

This property extends to a finite composition of fi
Application. For an algorithm, if the running time of its each
step is upper bounded by h(n), and the algorithm only
consists of constant steps, then the overall complexity is
O(h(n)).

Multiplication by a constant. Let k > 0 be a constant. Then:
O(kg) = O(g), if k ̸= 0.
f = O(g)⇒ kf = O(g) (multiplicative constants can be
omitted)

48 / 69

Properties of Big-O Notations (2/2)
Product

f1 = O(g1) ∧ f2 = O(g2)⇒ f1f2 = O(g1g2)
f ·O(g) = O(fg)

Sum
f1 = O(g1) ∧ f2 = O(g2)⇒ f1 + f2 = O(max(g1, g2))
This implies f1 = O(g) ∧ f2 = O(g)⇒ f1 + f2 ∈ O(g), which
means that O(g) is a convex cone.

This property extends to a finite composition of fi
Application. For an algorithm, if the running time of its each
step is upper bounded by h(n), and the algorithm only
consists of constant steps, then the overall complexity is
O(h(n)).

Multiplication by a constant. Let k > 0 be a constant. Then:
O(kg) = O(g), if k ̸= 0.
f = O(g)⇒ kf = O(g) (multiplicative constants can be
omitted)

48 / 69

Properties of Big-O Notations (2/2)
Product

f1 = O(g1) ∧ f2 = O(g2)⇒ f1f2 = O(g1g2)
f ·O(g) = O(fg)

Sum
f1 = O(g1) ∧ f2 = O(g2)⇒ f1 + f2 = O(max(g1, g2))
This implies f1 = O(g) ∧ f2 = O(g)⇒ f1 + f2 ∈ O(g), which
means that O(g) is a convex cone.

This property extends to a finite composition of fi
Application. For an algorithm, if the running time of its each
step is upper bounded by h(n), and the algorithm only
consists of constant steps, then the overall complexity is
O(h(n)).

Multiplication by a constant. Let k > 0 be a constant. Then:
O(kg) = O(g), if k ̸= 0.
f = O(g)⇒ kf = O(g) (multiplicative constants can be
omitted)

48 / 69

Properties of Big-O Notations (2/2)
Product

f1 = O(g1) ∧ f2 = O(g2)⇒ f1f2 = O(g1g2)
f ·O(g) = O(fg)

Sum
f1 = O(g1) ∧ f2 = O(g2)⇒ f1 + f2 = O(max(g1, g2))
This implies f1 = O(g) ∧ f2 = O(g)⇒ f1 + f2 ∈ O(g), which
means that O(g) is a convex cone.

This property extends to a finite composition of fi
Application. For an algorithm, if the running time of its each
step is upper bounded by h(n), and the algorithm only
consists of constant steps, then the overall complexity is
O(h(n)).

Multiplication by a constant. Let k > 0 be a constant. Then:
O(kg) = O(g), if k ̸= 0.
f = O(g)⇒ kf = O(g) (multiplicative constants can be
omitted)

48 / 69

Outline

1 Notions of Algorithm and Time Complexity

2 Pseudocode of Algorithm

3 Asymptotic Order of Function

4 Important Function Class

5 Survey of Common Running Times

49 / 69

Important Function Classes (increasing order)

We list important function class in ascending order
constant: O(1)

double logarithmic: log logn
logarithmic: logn
polylogarithmic: (logn)c, c > 1

fractional power: nc, 0 < c < 1

linear: O(n)

loglinear or quasilinear: n logn
polynomial: nc, c > 1 (quadratic: n2, cubic n3)

exponential: cn, c > 1

factorial: n!

50 / 69

Asymptotic Bounds for some Common Functions (1/3)

Technical tool. Limit Definitions of O,Ω,Θ, o, ω

Polynomials. Let f(n) = a0 + a1n+ · · ·+ adn
d, then

f(n) = Θ(nd).
Proof.

lim
n→∞

a0 + a1n+ · · ·+ adn
d

nd
= ad > 0

Example. Let f(n) = n2/2− 3n, f(n) = Θ(n2).

51 / 69

Asymptotic Bounds for some Common Functions (2/3)

Logarithms. Θ(loga n) ∼ Θ(logb n) for any constants a, b > 0

no need to specify base (assuming it is a constant)

Logarithms vs. Polynomials. ∀d > 1, logn = o(nd).
Proof.

Both limn→∞ lnn =∞ and limn→∞ nd =∞ and are
differentiable:
Apply L’Hôpital (Bernoulli) rule once

lim
n→∞

lnn

nd
= lim

n→∞

1/n

dnd−1

= lim
n→∞

1

dnd
= 0

52 / 69

Asymptotic Bounds for some Common Functions (2/3)

Logarithms. Θ(loga n) ∼ Θ(logb n) for any constants a, b > 0

no need to specify base (assuming it is a constant)
Logarithms vs. Polynomials. ∀d > 1, logn = o(nd).

Proof.
Both limn→∞ lnn =∞ and limn→∞ nd =∞ and are
differentiable:
Apply L’Hôpital (Bernoulli) rule once

lim
n→∞

lnn

nd
= lim

n→∞

1/n

dnd−1

= lim
n→∞

1

dnd
= 0

52 / 69

Asymptotic Bounds for some Common Functions (2/3)

Logarithms. Θ(loga n) ∼ Θ(logb n) for any constants a, b > 0

no need to specify base (assuming it is a constant)
Logarithms vs. Polynomials. ∀d > 1, logn = o(nd).
Proof.

Both limn→∞ lnn =∞ and limn→∞ nd =∞ and are
differentiable:
Apply L’Hôpital (Bernoulli) rule once

lim
n→∞

lnn

nd
= lim

n→∞

1/n

dnd−1

= lim
n→∞

1

dnd
= 0

52 / 69

Asymptotic Bounds for some Common Functions (3/3)

Exponentials vs. Polynomials. ∀c > 1 and ∀d > 0, nd = o(cn).

Proof. W.L.O.G, choose d as a positive integer,
Both limn→∞ nd =∞ and limn→∞ cn =∞ and are
differentiable.
Apply L’Hôpital (Bernoulli) rule repeatedly until the
numerator is constant

lim
n→∞

nd

cn
= lim

n→∞

dnd−1

cn ln c
= lim

n→∞

d(d− 1)nd−2

cn(ln c)2

= · · · = lim
n→∞

d!

cn(ln c)d
= 0

53 / 69

Asymptotic Bounds for some Common Functions (3/3)

Exponentials vs. Polynomials. ∀c > 1 and ∀d > 0, nd = o(cn).
Proof. W.L.O.G, choose d as a positive integer,

Both limn→∞ nd =∞ and limn→∞ cn =∞ and are
differentiable.
Apply L’Hôpital (Bernoulli) rule repeatedly until the
numerator is constant

lim
n→∞

nd

cn
= lim

n→∞

dnd−1

cn ln c
= lim

n→∞

d(d− 1)nd−2

cn(ln c)2

= · · · = lim
n→∞

d!

cn(ln c)d
= 0

53 / 69

Factorial Function

Stirling Formula (named after James Stirling, though it was first
stated by Abraham de Moivre)

Precise form:

n! =
√
2πn

(n
e

)n
(
1 + Θ

(
1

n

))

Simple form:
lnn! = n lnn− n+O(lnn)

n! = o(nn)

n! = ω(2n)

lnn! = Θ(n lnn) (integral method)

54 / 69

Factorial Function

Stirling Formula (named after James Stirling, though it was first
stated by Abraham de Moivre)

Precise form:

n! =
√
2πn

(n
e

)n
(
1 + Θ

(
1

n

))

Simple form:
lnn! = n lnn− n+O(lnn)

n! = o(nn)

n! = ω(2n)

lnn! = Θ(n lnn) (integral method)

54 / 69

Factorial Function

Stirling Formula (named after James Stirling, though it was first
stated by Abraham de Moivre)

Precise form:

n! =
√
2πn

(n
e

)n
(
1 + Θ

(
1

n

))

Simple form:
lnn! = n lnn− n+O(lnn)

n! = o(nn)

n! = ω(2n)

lnn! = Θ(n lnn) (integral method)

54 / 69

Factorial Function

Stirling Formula (named after James Stirling, though it was first
stated by Abraham de Moivre)

Precise form:

n! =
√
2πn

(n
e

)n
(
1 + Θ

(
1

n

))

Simple form:
lnn! = n lnn− n+O(lnn)

n! = o(nn)

n! = ω(2n)

lnn! = Θ(n lnn) (integral method)

54 / 69

Proof of the Upper Bound

lnn! =

n∑
k=1

ln k ≤
∫ n+1

2
lnxdx

= (x lnx− x)n+1
2

= O(n lnn)

55 / 69

Proof of the Lower Bound

lnn! =

n∑
k=1

ln k ≥
∫ n

1
lnxdx

= (x lnx− x)n1

= n lnn− n+ 1 = Ω(n lnn)

56 / 69

Application: Estimate the Size of Search Space

Recall the ROI optimization problem: the number of different
investment schemes: m coins on n projects

Cm
m+n−1 =

(m+ n− 1)!

m!(n− 1)!

=

√
2π(m+ n− 1)(m+ n− 1)m+n−1

(
1 + Θ

(
1

m+n−1

))
√
2πmmm

(
1 + Θ

(
1
m

))√
2π(n− 1)(n− 1)n−1

(
1 + Θ

(
1

n−1

))
= Θ((1 + ε)m+n−1)

57 / 69

Rounding Function

Rounding a number means replacing it with a different number
that is approximately equal to the original, but has a shorter,
simpler representation

round down (or take the floor)
y = floor(x) = ⌊x⌋: y is the largest integer that does not
exceed x

round up (or take the ceiling)
y = ceil(x) = ⌈x⌉: y is the smallest integer that is not less
than x

Example. ⌊2.6⌋ = 2, ⌈2.6⌉ = 3, ⌊2⌋ = ⌈2⌉ = 2

Application. When performing binary search in A[n], the index of
median is ⌊n/2⌋, the subproblem is of size ⌊n/2⌋.

58 / 69

Rounding Function

Rounding a number means replacing it with a different number
that is approximately equal to the original, but has a shorter,
simpler representation

round down (or take the floor)
y = floor(x) = ⌊x⌋: y is the largest integer that does not
exceed x

round up (or take the ceiling)
y = ceil(x) = ⌈x⌉: y is the smallest integer that is not less
than x

Example. ⌊2.6⌋ = 2, ⌈2.6⌉ = 3, ⌊2⌋ = ⌈2⌉ = 2

Application. When performing binary search in A[n], the index of
median is ⌊n/2⌋, the subproblem is of size ⌊n/2⌋.

58 / 69

Rounding Function

Rounding a number means replacing it with a different number
that is approximately equal to the original, but has a shorter,
simpler representation

round down (or take the floor)
y = floor(x) = ⌊x⌋: y is the largest integer that does not
exceed x

round up (or take the ceiling)
y = ceil(x) = ⌈x⌉: y is the smallest integer that is not less
than x

Example. ⌊2.6⌋ = 2, ⌈2.6⌉ = 3, ⌊2⌋ = ⌈2⌉ = 2

Application. When performing binary search in A[n], the index of
median is ⌊n/2⌋, the subproblem is of size ⌊n/2⌋.

58 / 69

Properties of Rounding Function

Proposition 1. x− 1 < ⌊x⌋ ≤ x ≤ ⌈x⌉ < x+ 1

Proof. We proof this by considering two cases:
1 x is an integer: obvious
2 ∃n ∈ Z such that n < x < n+ 1, definition of rounding

function ⇒ ⌊x⌋ = n, ⌈x⌉ = n+ 1

Proposition 2. Let n, a, b ∈ Z, we have:

⌊x+ n⌋ = ⌊x⌋+ n, ⌈x+ n⌉ = ⌈x⌉+ n⌈n
2

⌉
+

⌊n
2

⌋
= n⌈⌈

n
a

⌉
b

⌉
=

⌈ n

ab

⌉
,

⌊⌊
n
a

⌋
b

⌋
=

⌊ n

ab

⌋
59 / 69

Running Times

60 / 69

Outline

1 Notions of Algorithm and Time Complexity

2 Pseudocode of Algorithm

3 Asymptotic Order of Function

4 Important Function Class

5 Survey of Common Running Times

61 / 69

Common Running Times (1/4)

Constant time. T (n) = O(1)

Determine if a binary number is even or odd
Random access of array A[i] or hash map (key-value) access

Logarithmic time. T (n) = O(logn)
Search in a sorted array of size n: binary search

Fractional power. T (n) = n1/2

Primality test

62 / 69

Common Running Times (1/4)

Constant time. T (n) = O(1)

Determine if a binary number is even or odd
Random access of array A[i] or hash map (key-value) access

Logarithmic time. T (n) = O(logn)
Search in a sorted array of size n: binary search

Fractional power. T (n) = n1/2

Primality test

62 / 69

Common Running Times (1/4)

Constant time. T (n) = O(1)

Determine if a binary number is even or odd
Random access of array A[i] or hash map (key-value) access

Logarithmic time. T (n) = O(logn)
Search in a sorted array of size n: binary search

Fractional power. T (n) = n1/2

Primality test

62 / 69

Common Running Times (2/4)

Linear time. T (n) = O(n): running time is proportional to input
size

Merge: combine two sorted lists A = a1, . . . , an with
B = b1, . . . , bn into sorted whole

merged result
////// ai

/////////// bj

A

B

After each compare, the length of output list increases by at least
1. When one list is empty, the rest part of another list is directly
merged to the result list.

Upper bound: 2n− 1 vs. Lower bound: n

63 / 69

Common Running Times (2/4)

Linear time. T (n) = O(n): running time is proportional to input
size

Merge: combine two sorted lists A = a1, . . . , an with
B = b1, . . . , bn into sorted whole

merged result
////// ai

/////////// bj

A

B

After each compare, the length of output list increases by at least
1. When one list is empty, the rest part of another list is directly
merged to the result list.

Upper bound: 2n− 1 vs. Lower bound: n

63 / 69

Common Running Times (3/4)

Loglinear time. T (n) = O(n logn) (arises in divide-and-conquer
algorithms)

Mergesort and heapsort are sorting algorithms that perform
O(n logn) compares
FFT

Quadratic time. T (n) = O(n2)

Closest pair of points. Given a list of n points in the plane
(x1, y1), . . . , (xn, yn), find the pair that is closest. O(n2)
solution: try all pairs of points

Remark. Ω(n2) seems inevitable, but this is just an illusion.
Cubic time. Enumerate all triples of elements

Plain Matrix multiplication: An×n × Bn×n: each ci,j requires
O(n) multiplications, totally n2 elements in Cn×n

64 / 69

Common Running Times (3/4)

Loglinear time. T (n) = O(n logn) (arises in divide-and-conquer
algorithms)

Mergesort and heapsort are sorting algorithms that perform
O(n logn) compares
FFT

Quadratic time. T (n) = O(n2)

Closest pair of points. Given a list of n points in the plane
(x1, y1), . . . , (xn, yn), find the pair that is closest. O(n2)
solution: try all pairs of points

Remark. Ω(n2) seems inevitable, but this is just an illusion.

Cubic time. Enumerate all triples of elements
Plain Matrix multiplication: An×n × Bn×n: each ci,j requires
O(n) multiplications, totally n2 elements in Cn×n

64 / 69

Common Running Times (3/4)

Loglinear time. T (n) = O(n logn) (arises in divide-and-conquer
algorithms)

Mergesort and heapsort are sorting algorithms that perform
O(n logn) compares
FFT

Quadratic time. T (n) = O(n2)

Closest pair of points. Given a list of n points in the plane
(x1, y1), . . . , (xn, yn), find the pair that is closest. O(n2)
solution: try all pairs of points

Remark. Ω(n2) seems inevitable, but this is just an illusion.
Cubic time. Enumerate all triples of elements

Plain Matrix multiplication: An×n × Bn×n: each ci,j requires
O(n) multiplications, totally n2 elements in Cn×n

64 / 69

Common Running Times (4/4)

Polynomial time. T (n) = O(nk)

Independent set of size k: Given a graph of n nodes, are there
k nodes such that no two are joined by an edge?

enumerate all subsets of k nodes then check
check if Sk is an independent set takes O(k2) time
#(Sk) = Ck

n ≤ nk/k!

O(k2nk/k!) = O(nk) (poly-time for k = 17, but not practical)

Exponential time. T (n) = O(cn)

Independent set: Given a graph, what is the maximum
cardinality of an independent set?
Enumerate all subsets and check: O(n22n)

65 / 69

Common Running Times (4/4)

Polynomial time. T (n) = O(nk)

Independent set of size k: Given a graph of n nodes, are there
k nodes such that no two are joined by an edge?

enumerate all subsets of k nodes then check
check if Sk is an independent set takes O(k2) time
#(Sk) = Ck

n ≤ nk/k!

O(k2nk/k!) = O(nk) (poly-time for k = 17, but not practical)

Exponential time. T (n) = O(cn)

Independent set: Given a graph, what is the maximum
cardinality of an independent set?
Enumerate all subsets and check: O(n22n)

65 / 69

About Polynomial Running Time

Desirable scaling property. When the input size doubles, the
algorithm should only slow down by some constant factor c.

Polynomial running time satisfies the above scaling property
T (n) = O(nd) ← choose c = 2d

We say that an algorithm is efficient if has a polynomial running
time.

Exceptions. Some poly-time algorithms do have high constants
and/or exponents, and/or ; useless in practice.
Question. Which would you prefer 20n100 vs. n1+0.02 lnn

66 / 69

About Polynomial Running Time

Desirable scaling property. When the input size doubles, the
algorithm should only slow down by some constant factor c.

Polynomial running time satisfies the above scaling property
T (n) = O(nd) ← choose c = 2d

We say that an algorithm is efficient if has a polynomial running
time.

Exceptions. Some poly-time algorithms do have high constants
and/or exponents, and/or ; useless in practice.
Question. Which would you prefer 20n100 vs. n1+0.02 lnn

66 / 69

About Polynomial Running Time

Desirable scaling property. When the input size doubles, the
algorithm should only slow down by some constant factor c.

Polynomial running time satisfies the above scaling property
T (n) = O(nd) ← choose c = 2d

We say that an algorithm is efficient if has a polynomial running
time.

Exceptions. Some poly-time algorithms do have high constants
and/or exponents, and/or ; useless in practice.
Question. Which would you prefer 20n100 vs. n1+0.02 lnn

66 / 69

About Polynomial Running Time

Desirable scaling property. When the input size doubles, the
algorithm should only slow down by some constant factor c.

Polynomial running time satisfies the above scaling property
T (n) = O(nd) ← choose c = 2d

We say that an algorithm is efficient if has a polynomial running
time.

Exceptions. Some poly-time algorithms do have high constants
and/or exponents, and/or ; useless in practice.
Question. Which would you prefer 20n100 vs. n1+0.02 lnn

66 / 69

Summary of This Lecture (1/2)

Introduce abstract definition of algorithm
How to capture algorithm’s complexity?

First simplification: functions that express number of basic
computer steps of input size,

How to compare functions?
Second simplification: Big-O notations (five standard
asymptotic notations) capture order of functions. We study
the definitions, typical usages, examples, properties

Big-O notations lets us focus on the big picture.
Helpful analog: O(≤), Ω(≥), Θ(=), o(≪), ω(≫)

67 / 69

Summary of This Lecture (1/2)

Study important running time functions and classical algorithm
examples.

Notation abuses. O(g(n)) is a set of functions, but computer
scientists often write f(n) = O(g(n)) instead of f(n) ∈ O(g(n)).
Bottom line. OK to abuse notation; not OK to misuse it.

Don’t misunderstand this cavalier attitude towards constants.
Programmers are very interested in constants and would gladly
stay up nights in order to gain 5% efficiency improvement.

68 / 69

Figure: Theoretical breakthrough is toooooooo hard!

69 / 69

	Notions of Algorithm and Time Complexity
	Pseudocode of Algorithm
	Asymptotic Order of Function
	Important Function Class
	Survey of Common Running Times

